07.04.2020     0
 

Определение содержания витаминов в продуктах питания


Методы определения витаминов (стр. 1 из 3)

1. Общий обзор методов определения витаминов…………………3

2. Хроматографические методы определения витаминов…………5

https://www.youtube.com/watch?v=ytcopyrighten-GB

3. Электрохимические методы определения витаминов…………10

4. Инверсионно вольтамперометрический метод определения

водорасторимых витаминов B1 B2 в пищевых продуктах………..13

В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты.

Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания.

Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.

1. Общий обзор методов определения витаминов

Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.

Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556—81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ.

Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22—80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии.

Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.

Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира — кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах.

В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях.

Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина — Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.

2. Хроматографические методы определения витаминов

В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций.

Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом , кизельгелем

Метод газовой хроматографии рекомендован Государственной Фармакопеей (ГФ XI) для анализа масляных растворов а-токоферола ацетата. Этим способом определяют витамин Е в виде гептафторбутирильных производных и в пищевых продуктах.

Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения.

Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб , ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- [81] и масс-спектроскопический детекторы.

Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.

Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ.

Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.

-Одновременное определение нескольких компонентов

-Устранение влияния мешающих компонентов

— Комплекс можно быстро перестроить на выполнение других анализов.

источник

Определение каротина

Методы определения каротина основаны на извлечении его из растительных тканей бензином или петролейным эфиром и последующем освобождении от сопутствующих веществ при помощи адсорбционной хроматографии. Количественное определение каротина проводят колориметрированием полученных растворов, содержащих каротин. Для определения каротина предложены три варианта метода.

Методика определения. Первый вариант. Каротин извлекают из растительного материала после обезвоживания его спиртом или ацетоном, а затем омыляют вещества, перешедшие в экстракт, спиртовым раствором щелочи. Повторно извлекают каротин, фильтрат пропускают через адсорбционную колонку и затем определяют интенсивность окраски фильтрата.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Навеску измельченного продукта берут в количестве от 1 до 50 г в зависимости от содержания каротина и растирают ее в фарфоровой ступке с небольшим количеством промытого и прокаленного песка или измельченного стекла. К растертой массе в ступку приливают спирта или ацетона пятикратное количество, растирают, а затем добавляют порциями 20-30 мл бензина или петролейного эфира.

Фильтрат переносят в делительную воронку, добавляют несколько миллилитров дистиллированной воды для разделения слоев: верхний — бензиновый, нижний — спиртовой или ацетоновый. В другую делительную воронку сливают спиртовой или ацетоновый слой и промывают 2 раза бензином или петролейным эфиром, присоединяя эти вытяжки к основному фильтрату.

Соединенные вытяжки переносят в колбу и концентрируют до объема 20-30 мл на водяной бане при температуре не выше 50° С в вакууме. К экстракту добавляют приблизительно равный объем 5%-ной спиртовой щелочи и омыляют в течение 30 мин-1 ч на водяной бане с обратным холодильником при кипении раствора. Омыленный раствор переносят в делительную воронку, прибавляют несколько миллилитров воды, взбалтывают и отделяют бензиновый слой, который затем промывают 8-10 раз дистиллированной водой.

Предлагаем ознакомиться:  Содержание витамин в яблоках

Бензиновый экстракт переносят в колбу и сушат обезвоженным сульфатом натрия при взбалтывании до исчезновения мутности раствора, затем фильтруют и концентрируют до объема 5-10 мл, как указано выше. Сгущенный экстракт пропускают при небольшом разрежении через адсорбционную колонку, наполненную окисью магния или окисью алюминия.

Полученный фильтрат собирают в мерную колбу, доводят объем жидкости до метки петролейным эфиром или бензином и колориметрируют в колориметре Дюбоска или на фотоэлектроколориметре, используя для сравнения стандартный раствор азобензола или бихромата калия.

Второй вариант. Вначале проводят омыление исследуемого вещества, а затем экстрагирование каротина, адсорбцию и колориметрирование. Навеску измельченного вещества (от 1 до 50 г), растертую в ступке, переносят в колбу, прибавляют 20-40 мл 5%-ной спиртовой щелочи, омыляют в течение 30 мин-1 ч и дальше поступают так же, как и при первом способе.

Третий вариант (упрощенный). При этом способе исключается омыление, а все остальные стадии анализа те же, что и при первом способе.

Полученные экстракты промывают водой, сушат над безводным сернокислым натрием, концентрируют до малых объемов, пропускают через колонку с адсорбентом и колориметрируют.

При определении каротина в моркови можно исключить применение адсорбционной колонки, так как в моркови содержится незначительное количество других каротиноидов, которые практически мало влияют на результат определения. Анализ по третьему варианту проводят в тех случаях, когда результаты определения каротина совпадают с результатами, полученными при работе по первому варианту.

Определение каротина в сухом растительном материале (овощи, плоды, ягоды и другие продукты). Навеску измельченного вещества берут от 2 до 10 г, каротин извлекают бензином или петролейным эфиром без предварительной обработки спиртом. Полученные экстракты сгущают до объема 20-30 мл и омыляют спиртовым раствором КОН. Далее анализ проводят, как указано в первом варианте.

Вычисление содержания каротина. При использовании для колориметрирования колориметра Дюбоска и стандартных растворов азобензола или бихромата калия содержание каротина (х) в мг % в исследуемом продукте рассчитывают по формуле

где К — коэффициент пересчета (количество каротина в миллиграммах, соответствующее 1 мл стандартного раствора азобензола, — 0,00235 или стандартного раствора биххромата калия 0,00208); H — показание шкалы стандартного раствора, мм; H1- показание шкалы испытуемого раствора, мм; g — навеска исследуемого продукта, г; V — объем фильтрата после хроматографической адсорбции, мл.

где H2 — показание шкалы реохорда для стандартного раствора; H1 — то же, для испытуемого раствора. Остальные обозначения такие же, как и в предыдущей формуле.

Раствор азобензола. 14,5 мг кристаллического химически чистого азобензола растворяют в 100 мл 96%-ного этилового спирта.

Раствор бихромата калия. 360 мг трижды перекристаллизованного бихромата калия растворяют в 1 л дистиллированной воды.

Для адсорбционной колонки используют стеклянную трубку длиной 12-15 см, диаметром 1-1,5 см, суженную книзу. Трубку вставляют через пробку в колбу Бунзена. В нижнюю часть адсорбционной трубки помещают вату, а затем адсорбент — окись магния или окись алюминия. Для этого приготовляют кашицу из адсорбента и бензина или петролейного эфира. Кашицей заполняют колонку на 4-6 см и промывают небольшими порциями растворителя, избегая образования пузырьков воздуха.

Фильтрат переносят в делительную воронку, добавляют несколько миллилитров дистиллированной воды для разделения слоев: верхний — бензиновый, нижний — спиртовой или ацетоновый. В другую делительную воронку сливают спиртовой или ацетоновый слой и промывают 2 раза бензином или петролейным эфиром, присоединяя эти вытяжки к основному фильтрату.

Соединенные вытяжки переносят в колбу и концентрируют до объема 20-30 мл на водяной бане при температуре не выше 50° С в вакууме. К экстракту добавляют приблизительно равный объем 5%-ной спиртовой щелочи и омыляют в течение 30 мин-1 ч на водяной бане с обратным холодильником при кипении раствора. Омыленный раствор переносят в делительную воронку, прибавляют несколько миллилитров воды, взбалтывают и отделяют бензиновый слой, который затем промывают 8-10 раз дистиллированной водой.

Бензиновый экстракт переносят в колбу и сушат обезвоженным сульфатом натрия при взбалтывании до исчезновения мутности раствора, затем фильтруют и концентрируют до объема 5-10 мл, как указано выше. Сгущенный экстракт пропускают при небольшом разрежении через адсорбционную колонку, наполненную окисью магния или окисью алюминия.

где К — коэффициент пересчета (количество каротина в миллиграммах, соответствующее 1 мл стандартного раствора азобензола, — 0,00235 или стандартного раствора биххромата калия 0,00208); H — показание шкалы стандартного раствора, мм; H1- показание шкалы испытуемого раствора, мм; g — навеска исследуемого продукта, г; V — объем фильтрата после хроматографической адсорбции, мл.

где H2 — показание шкалы реохорда для стандартного раствора; H1 — то же, для испытуемого раствора. Остальные обозначения такие же, как и в предыдущей формуле.

Определение витаминов в продуктах питания

Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1.Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

Предлагаем ознакомиться:  Сорта и гибриды моркови для Северо-Запада

2.Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3.В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4.Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5.Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина.

В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов.Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1.Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску.

Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

2.В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

о-Фенилендиамин ДАК Хиноксалин

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3.Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование.

В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4.Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3 ) до Fe(2 ) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5.Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6.Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В1). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа.

С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1.Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3 ) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)).

Предлагаем ознакомиться:  Время приготовления овощей - сводная таблица

2.Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

Определение никотиновой кислоты (витамина PP)

В естественных продуктах витамин РР (никотиновая кислота) встречается в свободном и связанном виде: как никотиновая кислота C6H5O2N или ее амид C6H6ON2. Для определения никотиновой кислоты предложен колориметрический метод, который основан на взаимодействии никотиновой кислоты с бромистым роданидом или цианом.

Методика определения. Навеску измельченного исследуемого продукта берут в количестве 5 г, переносят в мерную колбу емкостью 100 мл и приливают 75 мл 2-н. раствора серной кислоты, смывая воронку и горлышко колбы раствором этой кислоты. Содержимое колбы энергично перемешивают. Колбу помещают в кипящую водяную баню и нагревают содержимое в течение 90 мин при периодическом перемешивании.

Берут 25 мл фильтрата, помещают в мерную колбу емкостью 50 мл, добавляют одну каплю фенолфталеина и вносят 10 н. раствор едкого натра до получения слабо-розового окрашивания (примерно 4 мл). Избыток щелочи устраняют 1-2 каплями 5 н. серной кислоты (до исчезновения розового окрашивания). Если раствор нагрелся, его охлаждают, а затем добавляют 2 мл раствора сернокислого цинка и 1-2 капли изоамилового спирта (для устранения пены).

Затем при перемешивании содержимого колбы добавляют по каплям раствор 4 н. едкого натра до образования густого осадка гидроокиси цинка. Осаждение заканчивают добавлением раствора 1 н. едкого натра до появления бледно-розового окрашивания. В колбу добавляют 1-2 капли 5 н. серной кислоты (до исчезновения розового окрашивания) и оставляют стоять в течение 10 мин при периодическом помешивании.

Смесь в колбе доводят до 50 мл дистиллированной водой, перемешивают и фильтруют через бумажный фильтр. Полученный фильтрат используют для проведения цветных реакций, для этого применяют специальные пробирки с пришлифованными пробками, которые вставляют в штатив круглой формы. Одновременно при проведении цветных реакций испытуемых растворов аналогичные операции повторяют со стандартными растворами никотиновой кислоты. При этом ставят контроль на реактивы к стандартным растворам и на амины к испытуемым.

Перечень растворов, используемых при проведении анализа, приведен в табл. 5.

Для проведения цветных реакций в две пробирки (параллельные определения) приливают по 5 мл стандартного раствора никотиновой кислоты и в две пробирки по 5 мл дистиллированной воды, затем в четыре другие пробирки приливают по 5 мл испытуемого раствора. Все пробирки, помещенные в штатив, погружают в баню при температуре 50° С на 5 мин, после чего под тягой из бюретки добавляют по 2 мл роданбромидного раствора согласно табл.

5 (исключая контроль на амины). Жидкость в пробирках перемешивают и оставляют их в бане на 10 мин при температуре 50° С. Пробирки охлаждают в холодной воде до комнатной температуры, помещают в деревянный ящичек с гнездами для пробирок, закрывают ящик крышкой и оставляют стоять в темном месте в течение 10 мин. В пробирки добавляют по 3 мл раствора метола, содержимое перемешивают и оставляют в закрытом ящике на 1 ч в темном месте.

По истечении часа полученные растворы колориметрируют на фотоэлектроколориметре при синем светофильтре в кювете при толщине слоя 10 мм. Содержание никотиновой кислоты вычисляют следующим образом. Устанавливают величины оптической плотности испытуемого (n) и стандартного (n1) растворов с учетом поправок на контроль

https://www.youtube.com/watch?v=cosamomglavnom

где А — оптическая плотность испытуемого раствора; А1 — то же, стандартного; В — оптическая плотность контрольного раствора на амины; B1 — оптическая плотность контрольного раствора на реактивы.

где G — содержание никотиновой кислоты в 1 мл стандартного раствора, мгк; n — оптическая плотность испытуемого раствора с учетом контрольного раствора; n1 — оптическая плотность стандартного раствора с учетом контрольного раствора; g — навеска, г; V — общий объем гидролизата, мл; V1 — объем гидролизата, взятый для очистки сернокислым цинком, мл; V2 — конечный объем раствора после добавления сернокислого цинка, мл.

1. Стандартный раствор никотиновой кислоты (основной). 500 мг никотиновой кислоты помещают в колбу емкостью 500 мл, добавляют 5 мл 10 н. H2SO4 и, когда кристаллы растворятся, доводят до метки дистиллированной водой. 1 мл такого раствора содержит 1000 мкг никотиновой кислоты. Раствор пригоден в течение 1 года при хранении на холоде.

2. Стандартный раствор — рабочий. 5 мл основного стандартного раствора разбавляют до 1 л дистиллированной водой. 1 мл такого раствора содержит 5 мкг никотиновой кислоты (раствор приготовляют ежедневно).

3. Роданбромидный раствор (готовят перед употреблением). Приготовляют бромную воду, внося в дистиллированную воду бром до прекращения растворения капель брома. К охлажденной на льду бромной воде, взятой в количестве необходимом для анализа, прибавляют по каплям 10%-ный раствор роданистого калия или аммония до светло-желтого окрашивания, а затем 1 %-ный раствор тех же реактивов до полного обесцвечивания бромной воды.

4. Раствор метола 8%-ный (приготовляют перед употреблением). 8 г перекристаллизованного метола растворяют в 0,5 н. растворе НСl и переносят в мерный цилиндр или колбу емкостью 100 мл, раствор доводят до метки 0,5 н. НСl.

Перекристаллизация метола. 500 мл 0,1 н. H2SO4 нагревают до кипения, в кипящий раствор добавляют 100 г метола, предварительно смешанного с 0,7 г NaHSO3; смесь нагревают до кипения. Если раствор сильно окрашен, добавляют 10 г активированного угля. Смесь немедленно переносят на предварительно нагретую воронку Бюхнера и фильтруют.

В химический стакан переносят фильтрат, добавляют 0,3 г бисульфита натрия и 700 мл 96%-ного спирта; все перемешивают, погружают в ледяную воду и оставляют в темном месте на несколько часов. Выпавшие кристаллы метола фильтруют через Бюхнеровскую воронку, промывают на воронке 96%-ным спиртом из пульверизатора и высушивают на воздухе в темноте. Перекристаллизованный метол хранят в склянке из темного стекла с притертой пробкой в темном месте.

источник

где А — оптическая плотность испытуемого раствора; А1 — то же, стандартного; В — оптическая плотность контрольного раствора на амины; B1 — оптическая плотность контрольного раствора на реактивы.

https://www.youtube.com/watch?v=ytadvertiseen-GB

где G — содержание никотиновой кислоты в 1 мл стандартного раствора, мгк; n — оптическая плотность испытуемого раствора с учетом контрольного раствора; n1 — оптическая плотность стандартного раствора с учетом контрольного раствора; g — навеска, г; V — общий объем гидролизата, мл; V1 — объем гидролизата, взятый для очистки сернокислым цинком, мл; V2 — конечный объем раствора после добавления сернокислого цинка, мл.


Об авторе: admin4ik

Ваш комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Гуси зимой: содержание в домашних условиях, требования к условиям, подходящая температура

Гуси зимой: содержание в домашних условиях, требования к условиям, подходящая температура

Оглавление1 Где можно содержать гусей в холодное время года1.1 В сарае1.2 В курятнике1.3 В теплице2 Организация...

Качели двойные на цепочке

Оглавление1 Качели двойные на цепях из дерева — КМ-3.01.22 Сохраните бюджет и получите скидку!2.1 Выгоды...

Лечебные свойства ромашки аптечной и применение её в народной медицине

Лечебные свойства ромашки аптечной и применение её в народной медицине

Оглавление1 Лекарственные свойства ромашки аптечной1.0.1 Полезные свойства цветков ромашки аптечной:1.0.2...

Adblock detector