15.04.2020     0
 

Заземление частного дома., калькулятор онлайн, конвертер


Вопросы, затрагиваемые в ПУЭ

Регламентирование порядка эксплуатации различных видов защитных систем может быть представлено в виде определённого набора требований, касающихся обустройства отдельных конструкций.

Согласно им, функциональная готовность контуров заземления, в состав которых входит целый набор конструктивных элементов, должна подтверждаться следующими техническими данными:

  • Описание конструкции и состава защитных устройств, применяемых в действующих электроустановках;
  • Формулы для расчета их размеров, а также нормы сопротивления заземляющих устройств (ЗУ);
  • Таблицы с корректировочными коэффициентами, позволяющими вводить поправки на качество и состояние грунта в месте размещения контура (с учётом материала отдельных элементов);
  • Порядок организации и проведения контрольных испытаний, имеющихся у систем заземления.

На заметку. Наличие документально подтверждённых данных о рабочих характеристиках и надёжности функционирования контура заземления частного дома, например, позволит исключить вероятность поражения электрическим током животных и жильцов.

При его обустройстве предписывается действовать в строгом соответствии с ПУЭ, а также соблюдать все требования, касающиеся эксплуатации данного защитного устройства.

Заглянем в теорию

Рассмотрим пример – схема заземления с одиночным вертикальным заземлителем, забитым в землю. С ним соединён металлический корпус электроприбора, где произошло короткое замыкание – фаза соединилась с корпусом. При этом исходные условия: замыкание «металл – на металл», без учёта сторонних факторов, поэтому сопротивлением в точке контакта можно пренебречь.

Далее при условии, что грунт вокруг заземлителя считаем однородным во всех направлениях, то и ток будет уходить в землю одинаково в этих же направлениях. При этом наибольшая плотность тока будет у самого заземлителя. Чем дальше от заземлителя, тем больше уменьшается его плотность. В итоге получается, что на пути тока сопротивление его движению с увеличением расстояния от заземлителя всё более уменьшается, потому что он проходит через постоянно увеличивающееся «сечение» проводника – земли.

И напряжение, которое снижается на пути этого тока по закону Ома: самое большое на самом заземлителе, а при удалении плавно убывает. А на каком-то расстоянии от заземлителя напряжение станет пренебрежимо мало – приблизится к 0. Точка с таким напряжением – точка нулевого потенциала. По сути эта точка нулевого потенциала и есть та самая земля, с которой связан корпус электроприбора.

Сопротивление заземляющего устройства, это не электрическое сопротивление его металла – оно низкое, это не сопротивление между металлом штыря и землёй – при соблюдении определённых условий оно тоже небольшое. Это сопротивление земли между штырём и точкой нулевого потенциала.

Всё это отображается формулой Rз : Uф / Iкз. То есть – сопротивление заземляющего устройства будет равно фазовому напряжению, пришедшему на корпус, поделённому на ток короткого замыкания. На этой формуле всё и завязано.

Но параметров сопротивления одиночного заземлителя скорее всего будет недостаточно, чтоб организовать контур заземления, соответствующий требованиям ПУЭ. Как всё привести в соответствие? Площадь заземляющего электрода имеет решающее значение, поэтому самое очевидное решение – нужно забить рядом ещё один электрод.

Заземление частного дома., калькулятор онлайн, конвертер

Однако существует зона, где они пересекаются. Получается, что это не простое параллельное соединение двух сопротивлений, за исключением примеров, когда заземлители очень далеко друг от друга. Но это очень непрактично, для реального устройства заземления потребуются огромные площади. Поэтому при расчётах удаления заземляющих электродов используют поправочные коэффициенты, которые учитывают их взаимное влияние – коэффициент экранирования.

Чтобы ещё уменьшить сопротивление контура заземления, нужно увеличить глубину погружения электрода, то есть увеличить его длину. Ведь чем длиннее заземлитель, тем больше площадь, способствующая растеканию тока. Этот эффект широко используется при изготовлении омеднённых штырей для комплектов заземления.

Соединяя электроды заземления горизонтальной связью, ещё снижается общее сопротивление заземляющего устройства. Влияние связи тоже учитывается, также принимаются во внимание, что её экранируют вертикальные электроды.

Получается система из нескольких элементов, зависящих друг от друга:

  • Расстояние между вертикальными заземлителями.
  • Их количество.
  • Важно, на какую глубину они забиты.
  • Форма – прут, труба, уголок. Это разная площадь прилегания к земле.
  • Форма и длина горизонтальной связи.

То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно. Остальные параметры для расчёта берутся из следующих понятий и величин.

Конструкция контура

Составные части

Уже упоминавшееся ранее сопротивление заземления (Rз) контура – основной параметр, контролируемый на всех этапах его эксплуатации и определяющий эффективность его применения. Эта величина должна быть настолько малой, чтобы обеспечить свободный путь аварийному току, стремящемуся стечь в землю.

Обратите внимание! Важнейшим фактором, оказывающим решающее влияние на величину сопротивления заземления, является качество и состояние грунта в месте обустройства ЗУ.

Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

  • В её составе необходимо предусмотреть набор металлических прутьев или штырей длиной не менее 2-х метров и диаметром от 10-ти до 25-ти миллиметров;
  • Они соединяются между собой (обязательно на сварку) пластинами из того же металла в конструкцию определённой формы, образуя так называемый «заземлитель»;
  • Кроме того, в комплект устройства входит подводящая медная шина (её ещё называют электротехнической) с сечением, определяемым типом защищаемого оборудования и величиной токов стекания (смотрите таблицу на рисунке ниже).
Таблица сечений шин

Таблица сечений шин

Эти составляющие устройства  необходимы для соединения элементов защищаемого оборудования со спуском (медной шиной).

Согласно положениям ПУЭ, защитный контур может иметь как наружное, так и внутреннее исполнение, причём к каждому из них предъявляются особые требования. Последними устанавливается не только допустимое сопротивление контура заземления, но и оговариваются условия измерения этого параметра в каждом частном случае (снаружи и внутри объекта).

При разделении систем заземления по их местонахождению следует помнить о том, что лишь для наружных конструкций корректен вопрос о том, как нормируется сопротивление заземлителя, поскольку внутри помещения он обычно отсутствует. Для внутренних конструкций характерна разводка по всему периметру помещений электротехнических шин, к которым посредством гибких медных проводников подсоединяются заземляемые части оборудования и приборов.

Для элементов конструкций, заземлённых снаружи объекта, вводится понятие сопротивления повторного заземления, появившееся вследствие особенной организации защиты на подстанции. Дело в том, что при формировании нулевого защитного или совмещённого с ним рабочего проводника на питающей станции нейтральная точка оборудования (понижающего трансформатора, в частности) уже заземляется один раз.

Поэтому когда на ответном конце того же провода (обычно это PEN или PE шина, выводимая непосредственно на щиток потребителя) делается ещё одно местное заземление, его с полным основанием можно назвать повторным. Организация этого вида защиты показана на рисунке ниже.

Повторное заземление

Повторное заземление

Важно! Наличие местного или повторного заземления позволяет подстраховаться на случай повреждения защитного нулевого провода PEN (PE – в системе электропитания TN-C-S).

Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля».

Напряжение прикосновения и напряжение шага

Если человек касается корпуса рассматриваемого в примере электроприбора, он имеет большее сопротивление, чем часть земли, на которой он стоит, и ток по нему идёт небольшой. Но он стоит на земле в зоне растекания тока короткого замыкания. А это значит, что присутствует какое-то напряжение между контактирующими частями тела.

Предлагаем ознакомиться:  Сколько варить цветную капусту свежую после закипания: советы хозяюшкам

Для него существуют определённые нормы. Его стремятся уменьшить на сколько возможно, поэтому расчётным путём достигаются допустимые параметры для заземляющего устройства.

Для простоты возьмём только один заземлитель, рассмотрим, что происходит непосредственно на земле. Чем больше удаление от заземляющего электрода, тем меньше напряжение, потенциал относительно удалённой точки, где он равен 0. Непосредственно у самого заземляющего электрода он максимально возможный. Если абстрактно соединить точки с одинаковым потенциалом, образуются так называемые эквипотенциальные линии – окружности.

Конечно, в электроустановках где стремятся ток замыкания на землю как можно скорее отключить это напряжение не является слишком опасным, даже если оно будет существовать какие-то секунды, человек возможно и получит какие-то неприятные ощущения, но только и всего.

Заземление частного дома.

В иных электроустановках, где ток замыкания на землю может существовать длительное время, на это тоже обращают особое внимание. Кстати, шаговое напряжение – термин, который активно используют в электробезопасности в части приближения к токоведущим частям, замыкающимся с землёй в открытых и закрытых распределительных устройствах.

Напряжения прикосновения и шага стремятся сделать минимальными, чтобы не пострадал человек. Для этого и получены, опубликованы в ПУЭ нормы – для практического применения.

А когда от подстанции отходит воздушная линия, то через определённые расстояния для обеспечения тока короткого замыкания, достаточного для срабатывания защиты, на опорах устраиваются повторные заземляющие устройства.

На вводе в бытовые здания: дома, коттеджи, также устраивается контур заземления, который тоже является повторным. Как только его подключили померять его индивидуальные параметры невозможно – он становится составной частью всей системы.

Конечно частника интересует только его «собственный» контур, точнее, как сделать заземление в доме. Чтоб оно было эффективным, а силы и средства небыли потрачены впустую. значение сопротивления повторного заземляющего устройства для частного дома тоже, как и для всех остальных. Это 15, 30, 60 ом соответственно напряжениям 660, 380, 220 В.

Однако может выясниться, что при некоторых условиях экономическая составляющая расчётного заземления зашкаливает разумные пределы. Например, удельное сопротивление грунта настолько велико, что даже многократное увеличение числа заземляющих электродов не приносит желаемый результат. Поэтому при удельном сопротивлении грунта более 100 Ом на метр, норму для устройства заземления можно превышать, но не более чем в 10 раз.

Влияние почвы на сопротивление Rз

Заземление частного дома., калькулятор онлайн, конвертер

Любой проводник электрического тока имеет удельное сопротивление. Какой-то проводник лучше, какой-то хуже проводит ток. Например, медь, алюминий или вообще нихром. Подобно можно классифицировать и грунты. Удельное сопротивление грунта – это его способность проводить электрический ток. Самый плохой проводник – камень, в сухом виде, при отсутствии солей это практически диэлектрик. Самый лучший проводник – очень влажный грунт. Остальные имеют промежуточные значения.

Казалось бы, у чернозёма отличные показатели, но он залегает лишь на поверхности земли. Чтоб миновать сезонно замерзающие грунты приходится иметь дело с грунтами ниже глубины промерзания. Какие расчётные параметры брать для заземляющего устройства в конкретном месте, можно определить только разведочным шурфом или наблюдением, при земляных работах.

Если грунт чистый песок или глина, берём их значения, но смешанный грунт нужно классифицировать. Например, возьмём немного глины в ладони, пытаемся раскатать в жгут. Если это удаётся и получается тонкий жгутик, это чистая глина. Когда он рвется на сантиметровые отрезки – это суглинок. Когда тонкий жгут не раскатывается и рвётся – супесь, совсем не раскатывается – песок.

На проводимость грунтов значительно влияет количество влаги в земле. Чем её больше, тем электрические характеристики лучше. Поэтому удельное сопротивление грунта зависит от климатических и сезонных изменений. По этой причине измерения сопротивления заземляющего устройства рекомендуется проводить в самое засушливое или морозное время.

Практически доказано, что сопротивление заземляющего устройства в значительной степени определяется состоянием грунта в месте расположения заземлителя. В свою очередь, характеристики почвы в зоне проведения защитных работ зависят от следующих факторов:

  • Влажность почвы на участке проведения работ;
  • Наличие в почве каменистых составляющих, в которых обустроить заземление попросту невозможно (в этом случае приходится выбирать другое место);
  • Возможность искусственного увлажнения грунта в особо засушливые летние периоды;
  • Химический состав почвы (наличие в ней солевых составляющих).

В зависимости от состава грунта, он может быть отнесён к тому или иному виду (смотрите фото ниже).

Различные виды почвы

Различные виды почвы

Исходя из особенностей формирования сопротивления заземлителя, предполагающих его снижение при увлажнении и повышении солевой концентрации, в случае крайней необходимости в грунт искусственно вводятся порции влажного химиката NaCl.

Хорошие грунты с точки зрения обустройства заземления – это суглинистые почвы с высоким содержанием торфяных составляющих и солей.

Устройство и типы контуров

Теоретических знаний как сделать контур заземления вполне достаточно, чтоб изготовить его своими руками. Объединим всё в короткую последовательность:

  • Делаем разметку на местности.
  • По ней копаем траншею глубиной 0.7 м, для удобства расширяем места для электродов.
  • Забиваем электроды. Если это уголок, можно прихватить к нему такой же обрезок, чтоб получить квадратное сечение – по нему удобней бить. Так же штыри любого сечения хорошо заколачивать электрическим отбойным молотком.
  • Прокладываем к ним соединительную полосу, подводим её к дому или даже заводим внутрь.
  • Обвариваем соединения максимально качественно, со всех сторон. При необходимости стыки производим не в торец, а внахлёст.

Далее, чтобы выполнить подключение заземления в частном доме своими руками полосу или прут подведённый к дому нужно подключить к PE или к PEN-шине в распределительном щитке. Для этого нужен проводник, так же соответствующий требованиям ПУЭ. Он может быть медным – 10 мм², алюминиевым -16 мм², стальным – 75 мм² – это минимально допустимые сечения. Однако подводить стальную полосу – хоть и экономно, но очень неудобно. Какой провод подойдёт?

Конечно медь – оптимальный вариант по удобству подключения. Если соединение находится снаружи дома, для надёжности используется обжимная клемма, оно выполняется в корпусе для защиты от атмосферных осадков либо в герметичной распределительной коробке.

Перед вводом в эксплуатацию устройства заземления для нового дома, в обязательном порядке проводятся замеры, этого просто не избежать. Однако не рассматривайте это как «повинность», ведь всё и затевалось для собственной безопасности. Поэтому для прочих, давно эксплуатируемых домов, сразу после устройства контура заземления рекомендуется пригласить специалистов, чтобы провести замеры и убедится в его работоспособности.

Однако, никто не застрахован от ошибок и форс-мажорных обстоятельств, контрольные замеры могут выявить значения сопротивления, превышающие норму. Для устранения таких недостатков «малой кровью», придётся добить дополнительный электрод.

Образцы контуров заземления

Таким образом рассчитывается, монтируется и подключается правильное заземление частного дома. Как видно – всё можно сделать своими руками. Кстати, нигде нет ограничений, что право на изготовление контура имеют только лицензированные организации, но воспользоваться их услугами для проверки – необходимо.

Стандартный контур заземления изготавливается не только в виде оптимального для большинства условий треугольника; он может иметь форму линии, прямоугольника, угла или даже дуги (овала). При рассмотрении каждой из этих конструкций с точки зрения их сопротивления необходимо отметить следующее:

  • Основой конструкции являются забиваемые в землю штыри или стержни;
  • Между собой они соединяются нарезанными по длине металлическими полосами (так называемой «металлосвязью»);
  • К одному из штырей или к полоске металла приваривается медная шина, прокладываемая в отдельной канавке, как это изображено на приведённом ниже рисунке.
Прокладка шины до конструкции КЗ

Прокладка шины до конструкции КЗ

Выбор треугольника в качестве основного вида заземлителя объясняется тем, что в этом случае удаётся получить максимальную зону рассеивания при небольшой занимаемой площади. Материальные затраты на такую конструкцию минимальны, а величина сопротивления растеканию в грунте при правильном её обустройстве соответствует нормативам.

Предлагаем ознакомиться:  Удобрение Кристалон - применение для томатов, видео

Расстояние между штырями треугольного контура обычно выбирается равным длине, а максимальное удаление одного от другого может быть вдвое больше. Так, если штыри заглубляются в землю на 250 сантиметров, оно может достигать 5-ти метров. Лишь при соблюдении этих условий удаётся получить оптимальные характеристики зарытого в землю сооружения.

Линейный контур представляет собой цепочку штырей, вбитых в землю с определённым шагом, равным примерно 5-10 метров (смотрите рисунок далее по тексту).

Линейный распределённый контур

Линейный распределённый контур

В отдельных случаях, зависящих от условий местности, конструкция сооружается в виде полукруга; при этом штыри располагаются на том же удалении один от другого. В таком распределённом устройстве сопротивление должно быть минимальным именно в точках соприкосновения прутьев с грунтом. Для достижения требуемого показателя Rз штырей забивается как можно больше.

Все остальные типы конструкций являются модификациями описанных выше заземлителей, а предъявляемые к ним требования по сопротивлению стекания являются производными от уже рассмотренных.

Заземление частного дома., калькулятор онлайн, конвертер

Основной параметр, который необходимо рассчитать — это проводимость заземлителя. Иными словами, нам нужно подобрать электрод такой конфигурации, чтобы сопротивление заземляющего устройства не превышало нормативное. Положения ПУЭ указывают следующие цифры, которые являются допустимым максимумом:

  • 2 Ом — для линейного напряжения однофазного тока 380 вольт;
  • 4 Ом — для 220 вольт;
  • 8 Ом — для 127 вольт.

При трёхфазном токе максимальными сопротивлениями будут те же 2, 4 и 8 Ом, но только для напряжений 660, 380 и 127 вольт соответственно.

где: d — диаметр штыря, L — длина электрода, T — расстояние от поверхности до средины заземлителя, ln — логарифм, π — константа (3,14), ρ — удельное сопротивление грунтов (Ом·м).

Обратите внимание, удельное сопротивление грунта — это основной параметр расчёта. Чем меньше это сопротивление, тем более проводимым будет наше заземление и более эффективной защита. Основные базовые цифры для определённого типа грунта можно найти в общедоступных таблицах и графиках, но многое зависит от его фактического состояния — плотности, водного баланса, температуры, сезонной глубины промерзания, наличия и концентрации в нём «электроактивных» химических веществ — щелочей, кислот, солей.

При температурах ниже нуля сопротивление грунтов резко повышается из-за замерзания воды. Поэтому возникают определённые сложности с заземлением в районах с вечномёрзлыми грунтами. По этой же причине, длина заземлителей должна быть на порядок больше, чем сезонная глубина промерзания в нормальных широтах.

В идеале, сопротивление грунта и заземляющего устройства в целом необходимо исследовать практически, тогда как формулы помогут нам сделать базовые расчёты. Часто анализ происходит непосредственно на стадии монтажа контуров — погружают электроды и в реальном времени делают замеры проводимости заземления: если сопротивление слишком велико, то увеличивают количество заземлителей или степень их заглубления.

Отметим, что заземление должно работать в любое время года, поэтому его рекомендуют проверять в самых неблагоприятных условиях (засуха, морозы). Если такой возможности нет, к результатам применяются специальные коэффициенты, учитывающие сезонные изменения сопротивления грунтов в конкретной местности.

Если для обустройства заземлителя используется несколько электродов, то порядок расчётов будет несколько другим:

  1. Производится расчёт сопротивления для каждого из них (может применяться формула, указанная выше).
  2. Показатели суммируются.
  3. Необходимо учесть «коэффициент использования».
  4. Формула выглядит следующим образом:

где: N — количество заземлителей, Ки — коэффициент использования, R1 сопротивление каждого электрода в отдельности.

Как видим, проводимость горизонтальных элементов, соединяющих электроды в единый контур, не учитывается.

Некоторую сложность может вызывать коэффициент использования — он отображает явление, при котором рядом расположенные электроды в контуре оказывают влияние друг на друга, так как зоны рассеивания токов в грунте при излишнем приближении начинают пересекаться. Чем ближе расположены отдельные заземлители друг к другу — тем больше общее сопротивление заземляющего устройства.

Отношение расстояния между электродами к их длине Число электродов Коэф. использования
1 5 0,7
1 10 0,6
1 15 0,53
1 20 0,5
2 5 0,81
2 10 0,75
2 15 0,7
2 20 0,67
Размещение по замкнутому контуру
Отношение расстояния между электродами к их длине Число электродов Коэф. использования
1 5 0,65
1 10 0,55
1 15 0,51
1 20 0,45
2 5 0,75
2 10 0,69
2 15 0,66
2 20 0,63

где: R — проектное сопротивление заземляющего устройства, R1 — сопротивление одного электрода, Ки — коэффициент использования.

Что касается схемы расположения заземлителей, то они не обязательно должны образовывать треугольник, хотя это самая распространённая конфигурация контура. Электроды могут располагаться в один ряд с последовательным соединением. Такой вариант удобен, если для обустройства заземления выделена узкая полоска земли.

Виды материала (профили)

Согласно требованиям ПУЭ, содержащим указания на то, каким должно быть сопротивление растекания тока в грунте, в большинстве случаев этот показатель устанавливается на уровне не более 4 Ом. Для получения этого значения обычно приходится приложить немало усилий, направленных на то, чтобы придерживаться заданных теми же требованиями технологий.

В первую очередь, это касается используемых при сборке заземляющего контура материалов, подбираемых, исходя из следующих условий:

  • При выборе штырей предпочтение должно отдаваться заготовкам из черного металла;
  • Наиболее часто применяется пруток типоразмером 16-20 мм или уголок с параметрами 50х50х5 мм и толщиной металла около 5 мм;
  • Применять в качестве элементов контура арматуру не допускается, поскольку она обладает каленой поверхностью, влияющей на нормальное стекание тока;
  • Для этих целей подходит именно чистый пруток, а не его арматурный заменитель.

Обратите внимание! Для районов с засушливым летом лучше всего подходят трубные толстостенные металлические заготовки, нижний конец которых сплющивается на конус, а затем в этой части трубы просверливаются несколько отверстий.

Согласно положениям ПУЭ, перед их размещением в грунте сначала бурятся лунки нужной длины, поскольку забить их вручную достаточно проблематично. В случае особо засушливого лета и резком ухудшении параметров заземлителя в полые части труб заливается концентрированный соляной раствор, что позволяет получить такое сопротивление, какое должно быть в соответствии с требованиями ПУЭ. Длина трубных заготовок выбирается в пределах 2,5-3 метра, что вполне хватает для большинства российских регионов.

К этому виду профильных заготовок предъявляются особые требования, касающиеся порядка их размещения в почве и состоящие в следующем:

  • Во-первых, трубные элементы защитного контура должны размещаться на глубине, превышающей уровень промерзания грунта не менее чем на 80-100 см;
  • Во-вторых, в особо засушливых местностях примерно треть длины заземлителя должна достигать влажных слоёв почвы;
  • В-третьих, при выполнении второго условия следует ориентироваться на особенности расположения в данном регионе так называемых «грунтовых вод». В случае если они находятся на значительной глубине, по правилу, сформулированному в положениях ПУЭ, необходимо будет подготовить более длинные трубные отрезки.

С видом и профилем используемых при обустройстве заземлителя штыревых заготовок можно ознакомиться на размещённом ниже рисунке.

Допустимые профили штырей

Допустимые профили штырей

На практике в большинстве регионов России обычно применяются стальной уголок и полоса из того же металла. Для того чтобы получить более точные параметры используемых элементов заземления, потребуются данные геологических обследований. При наличии этой информации можно будет привлечь к обсчёту параметров заземлителя специалистов.

Предлагаем ознакомиться:  Чем укрыть посаженный чеснок на зиму и когда это делать. Чем укрыть чеснок на зиму – подбираем материалы Боится ли чеснок мороза

Соединяющие штыри элементы (металлосвязь) обычно изготавливается из следующих электротехнических материалов:

  • Типовая медная шина, имеющая сечение на менее 10 мм2;
  • Алюминиевая полоса с поперечным сечением порядка 16 мм2;
  • Стальная полоска 100 мм2 (типоразмер – 25х5 мм).

Классическая металлосвязь делается обычно в виде нарезанных по размеру стальных полос, крепящихся на сварку к уголкам или оголовкам прутка.

Важно! От качества сварочного сочленения зависит, сможет ли данное заземляющее устройство или контур пройти проверочные испытания на соответствие переходного сопротивления нормируемому значению (4 Ома).

При применении более дорогих алюминиевых (медных) полосок к ним на сварку крепится болт подходящего типоразмера, на котором впоследствии фиксируются подводящие шины. Главное, на что нужно обращать внимание при обустройстве любых соединений, – это надёжность получаемого в результате контакта.

Для этого перед оформлением болтового сочленения необходимо тщательно зачистить обе соединяемые детали до появления блеска чистого металла. Дополнительно эти места желательно обработать шкуркой, а после закручивания болта хорошо его поджать, что обеспечит более надёжный контакт.

Из любого материала, даже не «бросового», а специально приобретённого контур заземления тоже не получится сделать. ПУЭ регламентирует и этот пункт, потому что:

  • Эти материалы должны быть погружены в землю без деформаций и повреждений. Способ – для этого – забивание либо задавливание.
  • У материалов должна быть хорошая сохранность – срок службы устройства исчисляется десятилетиями, они должны выдерживать условия эксплуатации.

Для этого обозначены минимальные допустимые значения сечений и размеров материалов для изготовления вертикальных и горизонтальных элементов заземлителей.

Для вертикальных заземлителей используется: труба, прут, уголок – это стержень заземления. Для горизонтальных заземлителей используется стальная полоса, круглый прут либо профиль.

Красить контур заземления ненужно, за исключением сварочных швов, наружных элементов.

Расчёт контура заземления

Традиционно электроды заземления располагаются в линию, но существуют и другие варианты: треугольник, квадрат и пр. А контуром устройство заземления иногда называют потому, что их располагали по периметру здания, опоясывали связью с несколькими вводами на внутренний контур – стальную полосу уже внутри здания. Поэтому контур – историческое название.

Но совсем необязательно окружать дом полностью, достаточно выбрать направление при линейном размещении электродов или определить площадь для какого-либо «кустового» варианта, где нет помех, не планируются земляные работы. Важно удобное расположение, чтоб избежать сложностей при вводе в распределительный щит.

Для расчётов применяется многоуровневая схема, просто параметров материалов и значений сопротивлений для конечного результата недостаточно. Некоторые из них элементарно зависят от конкретной ситуации. Например, от выбора материалов. Из чего делать? Из того что в наличии, чтобы меньше докупать. Если сразу ориентироваться «через магазин» – то исходить из условий цена-качество.

  • Глубиной погружения электродов заземления. Их длина должна иметь разумные пределы. Не меньше глубины промерзания грунта, но и соразмерно подручным средствам для забивания.
  • Расстоянием между ними. Оно должно быть кратным их длине, чтоб иметь возможность применить к расчётам коэффициенты взаимного влияния – экранирования.
  • Количеством электродов. Хотя в расчёт нужно заложить не только количество, но и длину полосы, которая их соединяет, ввод в дом.

То есть по сути контур полностью формируется, а после рассчитывается его сопротивление. Если оно соответствует нормам, то принимаем эти параметры для изготовления устройства. Если нет меняем некоторые, для улучшения характеристик.

Имея такие исходные данные, в первую очередь считаем сопротивление одиночных электродов заземления.

Заземление с одиночным вертикальным заземлителем

При всей своей сложности, формулы для разных типов заземлителей тоже разные: свои для круглого сечения, уголка и полосы. Также для расчёта придется выбрать коэффициенты взаимного влияния электродов, соответствующие исходным данным. После этого подставляем значения в общую формулу:

  • Где Rг – расчётное сопротивление горизонтального заземлителя.
  • Rв – расчётное сопротивление вертикального заземлителя.
  • Nв – количество вертикальных заземлителей.
  • nг – коэффициент экранирования горизонтальных заземлителей.
  • nв – коэффициент экранирования вертикальных заземлителей.

Считаем сопротивление заземляющего устройства. Если результат не устраивает, можно что-то изменить в исходных данных. Например, добавить или наоборот убрать лишние электроды заземления. Но, как только меняется их количество или длина, автоматически меняется либо длина горизонтальной связи, либо коэффициент взаимного влияния, или всё вместе.

Однако можно воспользоваться онлайн калькуляторами. А для убеждения в правильности расчёта сравнить показатели нескольких. Тем более, что уже имеется представление: что, как и зачем, а это уже преимущество. После расчётов можно переходить непосредственно к монтажу.

Самостоятельное изготовление

После подготовки всех необходимых материалов и выбора подходящего места для обустройства заземления можно переходить к непосредственным операциям по сборке заземляющего контура. На подготовительной стадии нарезаются трубные или другие профильные отрезки, размер которых выбирается на 20-30 см больше расчётного (это нужно для компенсации изгиба вершины заготовки при её вбивании в землю).

Одновременно с подготовкой точечных штыревых заземлителей начинается этап земляных работ, состоящих в подготовке канавок со скошенными краями (для лучшего удерживания грунта от осыпания).

Порядок производимых при земляных работах операций выглядит следующим образом:

  • Сначала подготавливается (расчищается) площадка под будущий контур заземления и делается его разметка;
  • Затем по уже нанесённой разметке выкапываются канавки глубиной 70-80 см и шириной порядка 50 см (глубина выбирается из соображения минимальной коррозии металлосвязей);
  • После этого нарезанные по длине штыри забиваются в намеченных точках так, чтобы над поверхностью выступало около 20 см (смотрите фото ниже);
Обустройство заземляющего контура

Обустройство заземляющего контура

  • По завершении монтажа всех вертикальных элементов верхние их части срезаются, а контактные площадки тщательно зачищаются, после чего к ним привариваются металлосвязи;
  • После того, как все сварочные швы остынут, они зачищаются болгаркой со шлифовальным диском, а затем окрашиваются специальной защитной краской на основе гудрона;

Обратите внимание! Покраске подвергаются лишь места образования сварных сочленений, наиболее подверженные коррозии.

  • Далее от ближайшей к жилому строению точки КЗ прокапывают канавку на ту же глубину, что была вырыта под металлосвязи (её ширина может быть чуть меньше, поскольку соединительная полоса делается цельной, не требующей проведения сварных работ);
  • Затем в подготовленную траншею укладывается полоса металла с типоразмером не менее 25х4 мм, которая впоследствии приваривается к штырю или перемычке (металлосвязи);
  • На заключительной стадии работ у самой стены дома уже проложенная металлическая полоса поднимается на высоту порядка 200 мм, где к ней на болт или сварку подсоединяется шина (провод), идущая на ГЗШ распределительного щитка (фото ниже).
Ввод заземления в дом

Ввод заземления в дом

Для подключения готового заземления в действующую цепь электроснабжения потребуется ознакомиться с существующими схемами организации заземления.

Ввод в дом

На шину заземления распределительной системы контур заводится с помощью стальной полосы с типоразмером 24х4 мм или же медной и гибкой проволоки сечением 10 мм². В отдельных случаях, специально оговариваемых в ПУЭ, для этого допускается применять алюминиевый провод сечением 16 мм² (смотрите рисунок ниже).

Схема заведения заземления в щиток

Схема заведения заземления в щиток

При возможности выбора между предложенными выше вариантами предпочтение отдаётся медному проводу, имеющему наиболее подходящие для выполнения поставленной задачи характеристики.

В заключительной части обзора обратим внимание пользователей на то, что сделать заземляющий контур своими руками не очень просто, поскольку при проведении этих работ необходимо строгое соблюдение требований ПУЭ. Для тех, кто полностью не уверен в своих силах, всегда имеется «запасной» выход – пригласить представителей организации, специализирующейся на изготовлении заземлений.


Об авторе: admin4ik

Ваш комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Гуси зимой: содержание в домашних условиях, требования к условиям, подходящая температура

Гуси зимой: содержание в домашних условиях, требования к условиям, подходящая температура

Оглавление1 Где можно содержать гусей в холодное время года1.1 В сарае1.2 В курятнике1.3 В теплице2 Организация...

Качели двойные на цепочке

Оглавление1 Качели двойные на цепях из дерева — КМ-3.01.22 Сохраните бюджет и получите скидку!2.1 Выгоды...

Лечебные свойства ромашки аптечной и применение её в народной медицине

Лечебные свойства ромашки аптечной и применение её в народной медицине

Оглавление1 Лекарственные свойства ромашки аптечной1.0.1 Полезные свойства цветков ромашки аптечной:1.0.2...

Adblock detector