06.04.2020     0
 

Цвет космоса || Цвет космоса


Цветовое пространство XYZ

где

— спектральная плотность какой-либо энергетической фотометрической величины (например потока излучения, энергетической яркости и т. п., в абсолютном или относительном выражении) на диапазоне длин волн от 390 до

830 нм

(это по данным 2006 года, в 1931 году диапазон был от 380 до

780 нм

— функции цветового соответствия. Причём, что для нас важно, координата Y соответствует визуальной яркости сигнала.

Цвет космоса || Цвет космоса

Из графиков видно, что выше 710 нм функции становятся пренебрежимо малыми в том смысле, что при наблюдении цвета близкого к белому, спектральная плотность на диапазоне выше 710 нм практически не вносит никакого вклада. Хотя мы знаем, что видимый свет лежит на диапазоне до 780 нм, но надо понимать, что это при монохроматическом излучении.

Я всё это к тому, что в расчётах мне пришлось в некоторых случаях экстраполировать недостающие данные отражательной способности Луны как раз на тот диапазон, где функции цветового соответствия существенно малы. Поэтому возможная ошибка экстраполяции не приводит к заметной ошибке в вычисленных цветах.

где c – номер координаты цветового пространства (1, 2, 3 для X, Y, Z соответственно); cw – таблица функций цветового соответствия; f – спектральная плотность; M=(830-390)/0.1=4400 – количество шагов сетки.

Наиболее распространённое цветовое пространство с использованием модели RGB — sRGB. Поэтому, когда говорят про RGB без уточнений, подразумевают именно цветовое пространство sRGB, которое является стандартом представления цветового спектра с использованием модели RGB. Данный стандарт был создан Международным консорциумом по цвету (англ.

Преобразование XYZ в sRGB происходит в три этапа. Сначала координаты XYZ преобразуются в линейные координаты RGB, затем линейные координаты преобразуются в нелинейные координаты RGB, и в конце нелинейные координаты преобразуются в 8-битные координаты RGB, которые, собственно, являются координатами цветового пространства sRGB.

Интересно, откуда же взялись эти странные числа в квадратных матрицах? А взялись они из рекомендации ITU-R BT.709 [3]. Обозначим первую квадратную матрицу через XYZ_to_RGB, а вторую – через RGB_to_XYZ. Очевидно, они взаимно обратны. В рекомендации ITU-R BT.709 заданы требования, которые должны выполняться для второй матрицы. Из этих требований можно однозначно вычислить вторую матрицу, а первая равна обратной матрице второй.

Имеем 8 уравнений, когда у нас 9 неизвестных элементов матрицы

Если округлить числа в моём результате до четырёх знаков после запятой, то получатся как раз те самые странные числа в стандарте Международного консорциума по цвету. Я же в своих расчётах использую не округлённые матрицы, а вышеуказанные точные (насколько позволяют числа с плавающей запятой двойной точности).

Обратите внимание, 0 преобразуется в 0, 1 в 1.

В конце нелинейные координаты RGB преобразуются в 8-битные умножением на 255 с последующим округлением до целых чисел.

Предлагаем ознакомиться:  Как вырастить цветы в теплице на продажу

Таким образом, я определил следующие функции для преобразования линейных координат RGB в 8-битные и обратно:Теперь мы готовы решить задачу из введения. Напоминаю условие.

Пусть задан цвет rgb(120,80,100).1) Какие значения RGB имеет цвет, который в 2 раза темнее заданного?2) Какие значения RGB у серого цвета такой же яркости, как у заданного?

Решение:Ответы: 1) rgb(86,56,71); 2) rgb(92,92,92).

Нормировка по яркости

Рассмотрим работу цифрового фотоаппарата. Основным элементом цифрового фотоаппарата является матрица, которая состоит из фотосенсоров. При проецировании изображения на матрицу, в каждом её фотосенсоре накапливается электрический заряд, пропорциональный энергии облучения фотосенсора. Фотосенсоры фиксируют яркость элемента изображения, не неся никакой информации о его цвете.

Таким образом, в качестве функции нам следует брать спектральную плотность энергии облучения одного пикселя. Такую спектральную плотность можно представить в виде

где

источника света;

Цвет космоса || Цвет космоса

поверхности фотографируемого объекта;

– некоторый постоянный коэффициент, который определяется временем экспозиции, диафрагмой, расстоянием от источника света до фотографируемого объекта и другими факторами. Под отражательной способностью подразумевается

, которое определяется как отношение яркости плоского элемента поверхности, освещенного параллельным пучком лучей, к яркости абсолютно белой поверхности, расположенной перпендикулярно к лучам.

Следует отметить, что такая нормировка не гарантирует, что значение каждой координаты RGB будет меньше или равно 255. К примеру, если снять абсолютно белый экран при красном источнике света, то цвет RGB зашкалит.

Цветовая температура

источника света, измеряемая в Кельвинах, определяется температурой

, расположенного на цветовой диаграмме там же, где и рассматриваемый источник излучения. Если источник света не попадает на кривую Планка (кривая, которая определяется множеством цветовых точек абсолютно чёрного тела при различных температурах), для его характеристики используется коррелированная цветовая температура.

, определяется самая близкая к источнику точка на кривой Планка (т. е. самое короткое геометрическое расстояние). Температура чёрного тела, расположенного в этой точке, и будет соответствовать коррелированной цветовой температуре рассматриваемого источника

Обратите внимание, я опустил постоянный множитель, т. к. он всё равно сокращается при дальнейшей нормировке по яркости (на цветовую температуру яркость источника света не влияет).

Значение T, при котором эта зависимость имеет минимум, является цветовой температурой рассматриваемого источника света.

Спектральная плотность излучения Солнца

. Источник света, соответствующий Солнцу из космоса, я в дальнейшем буду обозначать как E490. Также для сравнения в расчётах я рассматриваю

Обратите внимание, координаты sRGB у Солнца и абсолютно чёрного тела температуры 5912K точно совпадают. Это ничем не объясняется, просто так получается.

Цвет кружочков на последней картинке – это настоящий цвет Солнца из космоса. Человеческий глаз чётко видит красноватый оттенок Солнца. Так что, то, что Солнце из космоса белое – это большой миф! Следует отметить, что на фотографиях и видео программы «Аполлон» этот оттенок почему-то не наблюдается. На настоящих снимках видимый красноватый оттенок Солнца непременно проявился бы на белых поверхностях американского флага и скафандров. И как будет показано ниже, этот оттенок Солнца даёт заметный вклад в «красноту» Луны из космоса.

Луна по цвету разная или одинаковая?

Противники теории лунного заговора продвигают версию, что Луна по цвету разная. Якобы местами Луна серая, местами – коричневая, и при этом «Аполлоны» высаживались там, где Луна серая. Но эта версия прямо противоречит научным данным. В статье

Предлагаем ознакомиться:  Желтая плесень в цветах

Также Шевченко в своей книге

Так что, нет, Луна по цвету не разная, а одинаковая.

Результаты вычислений

$X=int _{390,nm}^{830,nm}I(lambda ),{overline {x}}(lambda ),dlambda \ Y=int _{390,nm}^{830,nm}I(lambda ),{overline {y}}(lambda ),dlambda \ Z=int _{390,nm}^{830,nm}I(lambda ),{overline {z}}(lambda ),dlambda$

– стандартный источник белого света D65;

– источник света от Солнца в отсутствии атмосферы;

– белая бумага с альбедо 0.91;

– данные по LRO при традиционных значениях углов

i = g = 30°e = 0°

– данные по Шевченко;

– линейные координаты RGB при

2-градусном

поле зрения;

10-градусном

поле зрения;

– линейные координаты RGB, усреднённые по

2-градусному10-градусному

полю зрения;

– координаты sRGB, полученные из линейных координат RGB, усреднённых по

2-градусному10-градусному

полю зрения;

– координаты sRGB, полученные из удвоенных линейных координат RGB, усреднённых по

2-градусному10-градусному

полю зрения;

– координаты sRGB, полученные из утроенных линейных координат RGB, усреднённых по

2-градусному10-градусному

полю зрения;

– координаты sRGB, полученные из учетверённых линейных координат RGB, усреднённых по

2-градусному10-градусному

полю зрения;

– цветовая температура, полученная из линейных координат RGB, усреднённых по

2-градусному10-градусному

полю зрения;

На следующем изображении приведены цвета поверхности Луны

(удвоенная яркость),

(утроенная яркость),

(учетверённая яркость) при источнике света

(т. е. при наблюдении из космоса) согласно данным LRO и Шевченко.

Как видите, Луна из космоса имеет коричневый цвет как по данным LRO, так и по данным Шевченко. По Шевченко получается немного (еле заметно) краснее, чем по LRO.

Цвет Луны на фотографиях

В данном разделе мы займёмся раскраской фотографий. Пусть дано изображение

и цвет в линейных координатах

Для интереса я взял фотографии с изображением лунной поверхности из фотоальбомов американской программы «Аполлон» и перекрасил в цвета, полученные из моих расчётов. Я привожу лишь результаты, а вывод о том, подлинные эти фотографии или фальшивые, сделайте сами.

В середине расположены исходные фотографии. Cлева фотографии раскрашены в цвета согласно данным LRO при традиционных значениях углов i = g = 30°, e = 0°, а справа – согласно данным Шевченко. Верхний ряд соответствует стандартному источнику света D65, т. е. в верхнем ряду показаны цвета поверхности Луны, которые получались бы, если бы Солнце было белым. Нижний ряд соответствует источнику света E490, т. е. в нижнем ряду показаны естественные цвета поверхности Луны при наблюдении из космоса.

Как видите, красноватый оттенок Солнца дает заметный вклад в «красноту» поверхности Луны, которая в итоге выглядит коричневой, а никак не серой.

Предлагаем ознакомиться:  Что посадить после чеснока на следующий год

Как видите, плёнка не только не «ушла» в синий цвет, а даже немного «ушла» в противоположную сторону от синего цвета. Такое отклонение никак не может превратить коричневый цвет в серый.

Плёнка «ушла» не в «синий» цвет, а в «красный». И даже после этого почему-то лунная поверхность на фотографии НАСА имеет серый цвет.

Плёнка просто «ушла» в коричневый цвет. Вот и вся причина коричневого оттенка лунной поверхности на фотографиях НАСА.

Зависимость цвета лунной поверхности от условий освещения и наблюдения

Используя данные LRO, приведённые в работе

, исследуем, как меняется цвет поверхности Луны от условий освещения и наблюдения. Рассмотрим источник света E490 (Солнце из космоса) и разные значения углов

. На следующей картинке показан результат, где в верхнем ряду представлены цвета с трёхкратной яркостью, а в нижнем – цвета, приведённые к одной и той же яркости

Y = 0.5

Как видно из картинки, меняется только яркость. В нижем ряду цвета практически одинаковые везде для человеческого глаза. Хотя, если присмотреться, в случае i = 0° можно увидеть очень слабое отклонение в серую сторону при приближении e к нулю.

На сайте НАСА имеется очень странная фотография, а именно это фотография

$I(lambda )$

Лунный грунт на фотографии выглядит коричневым, даже слишком коричневым с учётом того, что освещение производилось белым источником света. Правильность баланса белого можно проверить по цвету белой бумаги, которая попала в кадр.

Может это тот самый оранжевый грунт, который обнаружили астронавты «Аполлона-17»? Нет! В документе [11] чётко зафиксировано, что проба была взята астронавтами «Аполлона-11».

А теперь послушаем, что говорит Нил Армстронг (астронавт «Аполлона-11») в интервью Патрику Муру [12], которое он дал в 1970 году.

Выходит, Нил Армстронг, не побоюсь этого слова, соврал.

Литература

4. Robertson R. «Computation of correlated color temperature and distribution temperature» /.Opt. Soc. Am.58, 1528 (1968).

7. «Первые итоги определения физико-механических свойств грунтов Луны», М.: 1970. Госстрой СССР, под ред. проф. д-ра техн. наук В. Г. Булычева, стр. 8.

10.

11.

12.


Об авторе: admin4ik

Ваш комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Гуси зимой: содержание в домашних условиях, требования к условиям, подходящая температура

Гуси зимой: содержание в домашних условиях, требования к условиям, подходящая температура

Оглавление1 Где можно содержать гусей в холодное время года1.1 В сарае1.2 В курятнике1.3 В теплице2 Организация...

Качели двойные на цепочке

Оглавление1 Качели двойные на цепях из дерева — КМ-3.01.22 Сохраните бюджет и получите скидку!2.1 Выгоды...

Лечебные свойства ромашки аптечной и применение её в народной медицине

Лечебные свойства ромашки аптечной и применение её в народной медицине

Оглавление1 Лекарственные свойства ромашки аптечной1.0.1 Полезные свойства цветков ромашки аптечной:1.0.2...

Adblock detector